
Rule Formats for Nominal Operational Semantics
A very short and informal introduction

Luca Aceto
Gran Sasso Science Institute, L’Aquila, and

ICE-TCS, School of Computer Science, Reykjavik University

TLT — Types and Logic in Torino, 22 September 2017

Luca Aceto Rule Formats for Nominal Operational Semantics 1 / 19

Three academic leaders in Turin: The first 70 years

Luca Aceto Rule Formats for Nominal Operational Semantics 2 / 19

Three academic leaders in Turin: The first 70 years

One joint paper (according to DBLP)

Mario Coppo, Mariangiola Dezani-Ciancaglini, Simona Ronchi Della

Rocca: (Semi)-separability of finite sets of terms in Scott’s D∞-models of

the lambda-calculus. ICALP 1978:142–164, but. . .

Luca Aceto Rule Formats for Nominal Operational Semantics 2 / 19

Three academic leaders in Turin: The first 70 years

One joint paper (according to DBLP)

Mario Coppo, Mariangiola Dezani-Ciancaglini, Simona Ronchi Della

Rocca: (Semi)-separability of finite sets of terms in Scott’s D∞-models of

the lambda-calculus. ICALP 1978:142–164, but. . .

6←→ 33←→
Luca Aceto Rule Formats for Nominal Operational Semantics 2 / 19

Take-home message

Message of the talk

Computer scientists have developed a theory of ‘names’ in
order to understand what ‘names’ really matter in the
behaviour of computer programs.

Our goal: A general framework for defining operational
semantics for ‘nominal’ calculi such as the λ- and π-calculi.

Luca Aceto Rule Formats for Nominal Operational Semantics 3 / 19

What’s in a name? (Juliet’s view)

In natural languages we use names to refer to persons, animals,
places or things, amongst others.
Question: When does the meaning of what we say depend on the
names we use?

Luca Aceto Rule Formats for Nominal Operational Semantics 4 / 19

What’s in a name? (Juliet’s view)

In natural languages we use names to refer to persons, animals,
places or things, amongst others.
Question: When does the meaning of what we say depend on the
names we use?

Juliet’s view

“What’s in a name? That which we call a rose
By any other name would smell as sweet.”
(William Shakespeare, Romeo and Juliet (II, ii, 1–2))

Rest of the talk:

Was Juliet right?

What does this have to do with computer science?

Some technicalities, alas.

Three research leaders: The next 70 years.

Luca Aceto Rule Formats for Nominal Operational Semantics 4 / 19

The importance of languages in Computer Science

Fact of (Computer Science) Life

In Computer Science, we use programming languages to
communicate with machines.

An important question: Programs use ‘names’ to describe the
things they manipulate and their parts. On what names does the
behaviour of a program depend?

Luca Aceto Rule Formats for Nominal Operational Semantics 5 / 19

Names on which programs depend

On what names does the ‘program’ below depend?

go home.

What happens if we swap ET with another name?

Luca Aceto Rule Formats for Nominal Operational Semantics 6 / 19

Names on which programs depend

On what names does the ‘program’ below depend?

go home.

What happens if we swap ET with another name?

go home.

Key insight (Gabbay and Pitts)

A program depends on a name if swapping that name for another
changes its behaviour!

Luca Aceto Rule Formats for Nominal Operational Semantics 6 / 19

Names on which programs depend

On what names does the ‘program’ below depend?

go home.

What happens if we swap ET with another name?

go home.

Key insight (Gabbay and Pitts)

A program depends on a name if swapping that name for another
changes its behaviour!

is in the support of the program

go home.

Luca Aceto Rule Formats for Nominal Operational Semantics 6 / 19

Names that don’t matter

Example: Protocol for electronic voting

To any observer

voted for

should be the same as

voted for

and are not in the support of the relevant programs
and can be swapped one for the other!

Luca Aceto Rule Formats for Nominal Operational Semantics 7 / 19

Back to Shakespeare

Was Juliet right?

Juliet’s view (before swapping)

“What’s in a name? That which

we call a
By any other name would smell
as sweet.”
(Romeo and Juliet (II, ii, 1–2))

Juliet’s view (after swapping rose
with hákarl)

“What’s in a name? That which

we call a
By any other name would smell
as sweet.”
(Romeo and Juliet (II, ii, 1–2))

What do you think?

Luca Aceto Rule Formats for Nominal Operational Semantics 8 / 19

Back to Shakespeare

Was Juliet right?

Juliet’s view (before swapping)

“What’s in a name? That which

we call a
By any other name would smell
as sweet.”
(Romeo and Juliet (II, ii, 1–2))

Juliet’s view (after swapping rose
with hákarl)

“What’s in a name? That which

we call a
By any other name would smell
as sweet.”
(Romeo and Juliet (II, ii, 1–2))

What do you think?

Luca Aceto Rule Formats for Nominal Operational Semantics 8 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(b c) · (νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νc)(ac.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νc)(ac.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(a c) · (νb)(ab.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(cb.0) =α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(cb.0) 6=α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(cb.0) 6=α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(cb.0) 6=α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Nominal sets (semi-formally)

Countably many atoms a, b, . . . ∈ A.

Finite permutations of atoms π = (a1 b1) ◦ . . . ◦ (ak bk) ∈ Perm A.

(νb)(cb.0) 6=α (νb)(ab.0)

a ∈ supp((νb)(ab.0))

b#(νb)(ab.0) iff b 6∈ supp((νb)(ab.0))

Nominal set

A nominal set S is a ‘Perm A-set’ whose elements have finite
support (set of names that matter to the element).

Luca Aceto Rule Formats for Nominal Operational Semantics 9 / 19

Examples of nominal sets

Some nominal sets

1 A;

2 Perm A;

3 The set of raw lambda terms;

4 The set of lambda terms—that is, α-equivalence classes of
raw lambda terms;

5 The set of finitely supported functions between nominal sets.

Equivariant function

A function f between nominal sets is equivariant if
π · (f (s)) = f (π · s) for every π ∈ Perm A. (Ditto for relations.)

Luca Aceto Rule Formats for Nominal Operational Semantics 10 / 19

Examples of nominal sets

Some nominal sets

1 A;

2 Perm A;

3 The set of raw lambda terms;

4 The set of lambda terms—that is, α-equivalence classes of
raw lambda terms;

5 The set of finitely supported functions between nominal sets.

Equivariant function

A function f between nominal sets is equivariant if
π · (f (s)) = f (π · s) for every π ∈ Perm A. (Ditto for relations.)

Luca Aceto Rule Formats for Nominal Operational Semantics 10 / 19

SOS vs. nominal SOS theory

Classic SOS theory

1 Syntax: A (many-sorted)
signature Σ.

2 Language: The algebra of
Σ-terms.

3 Specification: Set of
inference rules.

4 Target semantic object:
Labelled transition system
(LTS).

Luca Aceto Rule Formats for Nominal Operational Semantics 11 / 19

SOS vs. nominal SOS theory

Classic SOS theory

1 Syntax: A (many-sorted)
signature Σ.

2 Language: The algebra of
Σ-terms.

3 Specification: Set of
inference rules.

4 Target semantic object:
Labelled transition system
(LTS).

Nominal SOS theory

1 Syntax: A many-sorted
nominal signature Σ,
including [a] . Function
symbols produce terms of
some base sort.

Luca Aceto Rule Formats for Nominal Operational Semantics 11 / 19

SOS vs. nominal SOS theory

Classic SOS theory

1 Syntax: A (many-sorted)
signature Σ.

2 Language: The algebra of
Σ-terms.

3 Specification: Set of
inference rules.

4 Target semantic object:
Labelled transition system
(LTS).

Nominal SOS theory

1 Syntax: A many-sorted
nominal signature Σ,
including [a] . Function
symbols produce terms of
some base sort.

2 Language: The initial
Σ-structure, whose elements
capture α-equivalence
classes of Σ-terms.

Luca Aceto Rule Formats for Nominal Operational Semantics 11 / 19

SOS vs. nominal SOS theory

Classic SOS theory

1 Syntax: A (many-sorted)
signature Σ.

2 Language: The algebra of
Σ-terms.

3 Specification: Set of
inference rules.

4 Target semantic object:
Labelled transition system
(LTS).

Nominal SOS theory

1 Syntax: A many-sorted
nominal signature Σ,
including [a] . Function
symbols produce terms of
some base sort.

2 Language: The initial
Σ-structure, whose elements
capture α-equivalence
classes of Σ-terms.

3 Specification: A nominal set
of inference rules.

Luca Aceto Rule Formats for Nominal Operational Semantics 11 / 19

SOS vs. nominal SOS theory

Classic SOS theory

1 Syntax: A (many-sorted)
signature Σ.

2 Language: The algebra of
Σ-terms.

3 Specification: Set of
inference rules.

4 Target semantic object:
Labelled transition system
(LTS).

Nominal SOS theory

1 Syntax: A many-sorted
nominal signature Σ,
including [a] . Function
symbols produce terms of
some base sort.

2 Language: The initial
Σ-structure, whose elements
capture α-equivalence
classes of Σ-terms.

3 Specification: A nominal set
of inference rules.

4 Target semantic object:
Nominal transition system.

What is a nominal transition system?

Luca Aceto Rule Formats for Nominal Operational Semantics 11 / 19

Semantics of a nominal SOS

Nominal transition system [Parrow et al., CONCUR’15]

Quadruple (S ,Act , bn,→) where

(i) S and Act are nominal sets of states and actions respectively,

(ii) → ⊆ S × (Act × S) is an equivariant binary transition
relation from states to residuals,

(iii) bn : Act → Pω(A) is an equivariant function from actions to
finite sets of binding names, and

(iv) → satisfies alpha-conversion of residuals:

If p
`→ p ′, b ∈ bn(`) and c fresh in (`, p ′) then

p
(b c)·`→ (b c) · p ′.

(νb)(ab.p)
a(νb)→ p

Luca Aceto Rule Formats for Nominal Operational Semantics 12 / 19

Semantics of a nominal SOS

Nominal transition system [Parrow et al., CONCUR’15]

Quadruple (S ,Act , bn,→) where

(i) S and Act are nominal sets of states and actions respectively,

(ii) → ⊆ S × (Act × S) is an equivariant binary transition
relation from states to residuals,

(iii) bn : Act → Pω(A) is an equivariant function from actions to
finite sets of binding names, and

(iv) → satisfies alpha-conversion of residuals:

If p
`→ p ′, b ∈ bn(`) and c fresh in (`, p ′) then

p
(b c)·`→ (b c) · p ′.

(νb)(ab.p)
a(νb)→ p

Luca Aceto Rule Formats for Nominal Operational Semantics 12 / 19

Semantics of a nominal SOS

Nominal transition system [Parrow et al., CONCUR’15]

Quadruple (S ,Act , bn,→) where

(i) S and Act are nominal sets of states and actions respectively,

(ii) → ⊆ S × (Act × S) is an equivariant binary transition
relation from states to residuals,

(iii) bn : Act → Pω(A) is an equivariant function from actions to
finite sets of binding names, and

(iv) → satisfies alpha-conversion of residuals:

If p
`→ p ′, b ∈ bn(`) and c fresh in (`, p ′) then

p
(b c)·`→ (b c) · p ′.

(νb)(ab.p)
a(νb)→ p

Luca Aceto Rule Formats for Nominal Operational Semantics 12 / 19

Semantics of a nominal SOS

Nominal transition system [Parrow et al., CONCUR’15]

Quadruple (S ,Act , bn,→) where

(i) S and Act are nominal sets of states and actions respectively,

(ii) → ⊆ S × (Act × S) is an equivariant binary transition
relation from states to residuals,

(iii) bn : Act → Pω(A) is an equivariant function from actions to
finite sets of binding names, and

(iv) → satisfies alpha-conversion of residuals:

If p
`→ p ′, b ∈ bn(`) and c fresh in (`, p ′) then

p
(b c)·`→ (b c) · p ′.

(νb)(ab.p)
a(νb)→ p

Luca Aceto Rule Formats for Nominal Operational Semantics 12 / 19

Semantics of a nominal SOS

Nominal transition system [Parrow et al., CONCUR’15]

Quadruple (S ,Act , bn,→) where

(i) S and Act are nominal sets of states and actions respectively,

(ii) → ⊆ S × (Act × S) is an equivariant binary transition
relation from states to residuals,

(iii) bn : Act → Pω(A) is an equivariant function from actions to
finite sets of binding names, and

(iv) → satisfies alpha-conversion of residuals:

If p
`→ p ′, b ∈ bn(`) and c fresh in (`, p ′) then

p
(b c)·`→ (b c) · p ′.

(νb)(ab.p)
a(νc)→ (b c) · p

Luca Aceto Rule Formats for Nominal Operational Semantics 12 / 19

Syntactic ingredients in a nominal SOS specification

Raw terms and their nominal sorts (used in SOS rules)

tσ ::= xσ | aα | (π • tσ)σ | ([aα]tσ)[α]σ | (tσ1 , . . . , tσk)σ1×...×σk |

(f (tσ))δ (f ∈ Σ, δ a base sort)

Nominal terms

The nominal term NT [[p]] is the interpretation of ground term
p in the initial ‘Σ-structure’.

NT [[p]] ≈ representation of the α-equivalence class of p.

Nominal terms are states of the nominal transition system
defined by a nominal SOS specification.

Interpretations of ground terms in NT coincide with the nominal
algebraic datatypes of Pitts.

Luca Aceto Rule Formats for Nominal Operational Semantics 13 / 19

Syntactic ingredients in a nominal SOS specification

Raw terms and their nominal sorts (used in SOS rules)

tσ ::= xσ | aα | (π • tσ)σ | ([aα]tσ)[α]σ | (tσ1 , . . . , tσk)σ1×...×σk |

(f (tσ))δ (f ∈ Σ, δ a base sort)

Nominal terms

The nominal term NT [[p]] is the interpretation of ground term
p in the initial ‘Σ-structure’.

NT [[p]] ≈ representation of the α-equivalence class of p.

Nominal terms are states of the nominal transition system
defined by a nominal SOS specification.

Interpretations of ground terms in NT coincide with the nominal
algebraic datatypes of Pitts.

Luca Aceto Rule Formats for Nominal Operational Semantics 13 / 19

Example: The π-calculus (in nominal form)

Base sorts ∆ = {pr, ac}, atom sorts A = {ch} and

Σ = { null : 1→ pr,
tau : pr→ pr,
in : (ch× [ch]pr)→ pr,
out : (ch× ch× pr)→ pr,
par : (pr × pr)→ pr,
sum : (pr × pr)→ pr,
rep : pr→ pr,
new : [ch]pr→ pr,
tauA : 1→ ac,
inA : (ch× ch)→ ac,
outA : (ch× ch)→ ac,
boutA : (ch× ch)→ ac }.

NT [[new([b](out(a, b,null)))]]→ NT [[(boutA(a, b),null)]]

stands for (νb)(ab.0)
a(νb)→ 0

Luca Aceto Rule Formats for Nominal Operational Semantics 14 / 19

Specification systems for nominal transition systems

Nominal rules

{ui → u ′i | i ∈ I } {aj 6 6≈ vj | j ∈ J}

t → t ′
Ru

where {ui → u ′i | i ∈ I } is finitely supported and J is finite.

Luca Aceto Rule Formats for Nominal Operational Semantics 15 / 19

Specification systems for nominal transition systems

Nominal rules

{ui → u ′i | i ∈ I } {aj 6 6≈ vj | j ∈ J}

t → t ′
Ru

where {ui → u ′i | i ∈ I } is finitely supported and J is finite.

Key ideas

Let ϕ be a ground substitution mapping variables to raw terms. In
proofs of transitions,

t → t ′ will be instantiated to NT [[ϕ(t)]]→ NT [[ϕ(t ′)]] and

a 6 6≈ t is satisfied by ϕ if a#NT [[ϕ(t)]].

This is in agreement with standard conventions in nominal calculi.

Luca Aceto Rule Formats for Nominal Operational Semantics 15 / 19

Specification systems for nominal transition systems

Nominal rules

{ui → u ′i | i ∈ I } {aj 6 6≈ vj | j ∈ J}

t → t ′
Ru

where {ui → u ′i | i ∈ I } is finitely supported and J is finite.

Key ideas

Let ϕ be a ground substitution mapping variables to raw terms. In
proofs of transitions,

t → t ′ will be instantiated to NT [[ϕ(t)]]→ NT [[ϕ(t ′)]] and

a 6 6≈ t is satisfied by ϕ if a#NT [[ϕ(t)]].

This is in agreement with standard conventions in nominal calculi.

Can we ensure syntactically that a set of rules induces a
nominal transition system?

Luca Aceto Rule Formats for Nominal Operational Semantics 15 / 19

Ensuring equivariance

Let R be a specification system that induces a transition system
T . Is T equivariant?

Equivariant format

R is in equivariant format iff the rule (a b) ·Ru is in R, for every
rule Ru in R and for each a, b ∈ A.

Theorem

If R is in equivariant format then T is equivariant.

Let bn be an equivariant binding-names function.
Does T satisfy alpha-conversion of residuals with respect to bn?

Luca Aceto Rule Formats for Nominal Operational Semantics 16 / 19

Ensuring equivariance

Let R be a specification system that induces a transition system
T . Is T equivariant?

Equivariant format

R is in equivariant format iff the rule (a b) ·Ru is in R, for every
rule Ru in R and for each a, b ∈ A.

Theorem

If R is in equivariant format then T is equivariant.

Let bn be an equivariant binding-names function.
Does T satisfy alpha-conversion of residuals with respect to bn?

Luca Aceto Rule Formats for Nominal Operational Semantics 16 / 19

Ensuring equivariance

Let R be a specification system that induces a transition system
T . Is T equivariant?

Equivariant format

R is in equivariant format iff the rule (a b) ·Ru is in R, for every
rule Ru in R and for each a, b ∈ A.

Theorem

If R is in equivariant format then T is equivariant.

Let bn be an equivariant binding-names function.
Does T satisfy alpha-conversion of residuals with respect to bn?
We have a grotty rule format for that. See CONCUR 2017 paper.

Luca Aceto Rule Formats for Nominal Operational Semantics 16 / 19

Ensuring equivariance

Let R be a specification system that induces a transition system
T . Is T equivariant?

Equivariant format

R is in equivariant format iff the rule (a b) ·Ru is in R, for every
rule Ru in R and for each a, b ∈ A.

Theorem

If R is in equivariant format then T is equivariant.

Let bn be an equivariant binding-names function.
Does T satisfy alpha-conversion of residuals with respect to bn?
We have a grotty rule format for that. See CONCUR 2017 paper.

Luca Aceto Rule Formats for Nominal Operational Semantics 16 / 19

Summary

Framework for SOS of languages with binding operation:

Raw terms (not up to alpha-equivalence) for specifications.
Nominal terms (up to alpha-equivalence) for proof trees.

Rule format for equivariance (pleasing).

ACR format, which ensures that a specification system
together with a function bn induces a nominal TS (not given
and not so pleasing yet, alas).

Luca Aceto Rule Formats for Nominal Operational Semantics 17 / 19

Three academic leaders in Turin: The next 70 years

“Det er svært at sp̊a — især om fremtiden.”

I trust that CS in Turin will be invariant under name permutations!

Luca Aceto Rule Formats for Nominal Operational Semantics 18 / 19

Three academic leaders in Turin: The next 70 years

“Det er svært at sp̊a — især om fremtiden.”

I trust that CS in Turin will be invariant under name permutations!

Luca Aceto Rule Formats for Nominal Operational Semantics 18 / 19

Conclusion

The message (reprise)

Name independence in computer science can be expressed in terms
of invariance under swapping of names both syntactically and
semantically. There is much left to do.

Want to know more? Ask the team of researchers at RU and
IMDEA working on Nominal Structural Operational Semantics.

Thank you!

Umberto Eco (1932–2016)
Luca Aceto Rule Formats for Nominal Operational Semantics 19 / 19

